

用户手册 [路威]

版本信息说明

版本	变更描述	日期	编辑
V1.0	创建说明书	2020/04/24	魏玉虎
V1.1	增加了硬件主部件的说明	2020/06/13	魏玉虎
V1.2	增加了开机后的操作说明	2020/06/16	魏玉虎
V1.3	增加 demo 功能展示列表	2020/06/17	魏玉虎
V1.4	增加了软件操作部分细节	2021/04/17	杨雄 朱晓宇
V2.0	整体排版调整	2021/04/23	杨雄
V2.1	添加细节 内容审核	2021/4/30	朱晓宇
V2.2	增加电机图片 修改页眉页脚 增加驱动板参数图片	2021/5/5	杨雄 朱晓宇
V2.5	修改细节	2021/5/5	朱晓宇
V2.6	增加敬告、安全注意事项	2021/5/11	杨雄
V2.7	修改封面、修改安全使用说明	2021/5/16	杨雄 朱晓宇
V2.9	修改主题颜色	2021/6/10	朱晓宇

手册概述

关于手册

欢迎您使用JUJON产品,感谢您的购买。 本手册记载了正确安装和使用JUJON产品需要注意的相关事项。 请仔细阅读本手册,阅读之后,请妥善保管,以便随时取阅。

手册的阅读对象

本手册面向:

- 装调人员。
- 维护人员。
- 维修人员。

对 JUJON 产品进行装调/维护/维修工作的人员必须接受过巨匠公司的培训并具备维护/维修工作所需的机械和电子知识。

手册用法

本手册应在进行以下作业时使用:

- 装调工作:从将机器人搬运到工作位置并将其固定在机座上,调试直到准备就绪;
- 维护工作: 定期对机器人系统进行维护, 以确保其功能正常发挥;
- 维修工作:当由于环境影响或使用人员的不当操作、机器人系统中某个零部件超过正常 使用年限等诸多原因而导致机器人发生故障时,需要针对机器人进行维修工作。

备注:

1. 本手册不定期更新,更新日期即版本号,用户可在巨匠机器人官方网站下载最新版(www.jujon.cn)。 2.本手册仅适用于中国大陆地区用户。

IUJON

安全说明

1.安全

本章详细介绍了有关对巨匠产品执行安装、维护和维修工作的人员的常规安全信息。请在搬运、安装和使用前,先充分阅读和理解本章节的内容与注意事项。

1.1 危险识别

机器人的安全性建立在正确配置和使用前提上,即使遵守所有的安全指示,操作者所造成的伤害或损 伤依然有可能发生。因此,了解机器人使用的安全隐患是非常重要的,有利于防患于未然。

以下表1-2是使用机器人的情境下可能存在的常见安全隐患:

	表1-1 危险级安全隐患							
	危险							
1	机器人搬运过程中的错误操作导致的人身伤害或者机器人损伤。							
2	未按要求装配或使用机器人,例如螺钉少拧或拧不紧,导致人身伤害或者机器人损伤。							
3	未进行机器人的正确安全功能配置,或者少安装了安全防护工具等,造成机器人安全功能未能 发挥作用,从而引起危险。							

表1-2 警告级安全隐患

日 录

第一章	移动底盘套件	1 -
	1.1 物料清单	2 -
	1.2 基本使用与操作	3 -
	1.3 基本介绍	4 -
	1.4 航模遥控器	7 -
	1.5 主控板参数	8 -
第二章	ROS 及无人驾驶学习套件	9 -
	2.1 物料清单	10 -
	2.2 性能参数	10 -
	2.3 基本介绍	11 -
	2.4 物理接口说明	13 -
第三章	基础测试	14 -
	3.1 整机组装	14 -
	测试流程	14 -
	3.2 进入系统	14 -
	3.3 设置连接 WIFI	14 -
	3.3 查看车子的 IP	15 -
	3.3 使用 XSheel 远程连接到路威	15 -
	3.4 查看 ROS 版本	16 -
	3.5 出厂源代码目录	17 -
第四章	功能测试	18 -
	4.1 RGB 相机的测试	18 -
	4.2 深度相机的测试	19 -
	4.3 雷达的测试	21 -
	4.4 电机的测试	23 -
第五章	注意事项	23 -
	5.1 电池注意事项	24 -
	5.2 使用环境注意事项	24 -
	5.3 其他注意事项	24 -
第六章	常见问题与解决 Q&A	25 -

第一章

移动底盘套件

产品概述

本产品(路威)是巨匠公司潜心研发的一款专门用于 ROS 及自动驾驶技术学习的入门 级套装产品,采用四轮四驱移动底盘,搭载英伟达最具性价比的学习套件 NVIDIA Jestson Nano,可实现激光 SLAM 导航、图像识别、视觉跟踪等功能,是学习 STM32 运动控制、机 器人操作系统(ROS)、自动驾驶等技术的最佳平台,适合高校教学,实验室研究,企业算 法原型验证。

技术特点

- ◆ 移动底盘采用四轮四驱结构,通过改变两侧车轮的方向和速度,实现前进、后退、 差 速转弯及原地转向;
- ◆ 基于 STM32 的主控板集成了四路驱动,通过串口向用户层实时反馈编码器和 IMU 信息, 可实现机器人的定位导航;
- ◆ Jestson Nano 预装 ubuntu 18.04 系统,并出厂安装了 ros melodic 元操作系统;
- ◆ 可以在学习各种 AI 算法的同时,学习 ROS 生态下的各种自动驾驶导航算法;

•••••

IJUJON

1.1 物料清单

收到本产品后,请确认以下物料:

序号	名称	数量	示意图	备注
01	小车主体	1	1000 CO	含主控板、锂电池
02	遥控器	1		
03	充电器	1		

1.2 基本使用与操作

将小车侧面电源开关往下压,开启整车电源;通过遥控器操控小车移动。测试遥控器操 控小车功能是否正常。

充电

本产品标准配备 2A 的充电器,如果小车速度明显变慢,无法正常工作,说明电池电压 过低,需要进行充电,请按以下步骤操作:

- 将小车电源开关往上压,使其处于停机断电状态;
- 将充电器插头插入车体侧面的充电孔;
- 将充电器另一端插入电源,充电器指示灯由绿变红,即表示进入充电状态;充满电后, 充电器指示灯变绿。

1.3 基本介绍

本产品由以下部分组成:

- ① 车身主体 ⑥ 电源总开关 向上关闭电源 向下打开电源
- ② 前左轮
 ⑦ 前右轮
- ⑤ 后左轮
 ⑧ 预留线槽
- ④ 后右轮⑨ 前防撞杠
- ⑤ 充电口(同时也是 12V 直流输出口,可以为液晶屏供电)

说明:小车有 "ROS" 字样一面本公司将其定义为前

整车性能

项目	参数			
长 x 宽 x 高(mm)	414 x 325 x 172			
车体重量				
电池	锂电池 12V 15Ah			
电机				
减速比				
设计载重				
转向	四轮差速转向			
空载最高车速(m/s)				
最小转弯半径				
最小离地间隙(mm)	57			
控制模式	遥控控制			
遥控器	2.4G / 极限距离 Km			
通讯接口	CAN/RS485			

几何尺寸

车轮参数

本产品采用工业级 6 寸充气轮, 直径 154mm, 周长为: 3.14X154mm/1000 = 0.484 米。 轮子转动一周, 机器人行进里程为 0.484 米。

IUJON

电机参数

路威采用了 4 个 12V 直流供电减速电机,电机减速比为 90,电机额定转速是: 48X150=7200rpm,电机转一周,编码器旋转一周产生 11 个脉冲。过减速箱后,输出轴转 1 圈产生的脉冲数是:11X150=1650 个脉冲。也就是说目前的轮子转一周产生 1650 个脉冲。

轮子转一周,机器人行进里程是 0.484 米,机器人的额定最大速度(米/秒)=(额定速度 rpm/减速比)/60*轮子的周长,S=7200/90/60*0.484=0.6453 米/秒,如何通过编码器的数据反映出实际的行进里程和速度呢?

轮子转一周产生 1650 个脉冲, 4 驱的驱动器内部做了 4 倍频, 所以数据接口上传的数据上, 变化 1650X4=6600 个脉冲值, 标示轮子转了一周。产生了 0.484 米的位移。

编码器参数

可以调整红线和白线正负极来改变电机基本旋转方向

1.4 遥控器

路威配备了标准航模遥控器,可以通过遥控器控制底盘前进、后退和差速转向运动。 具体功能如下:

① 前进后退拨杆(前后拨动) ② 四轮差数转向拨杆(左右拨动)

③ 电源开关

④ 速度切换拨杆

- ⑤ 速度微调按钮
- ⑥ 第三个按钮向下,其他按钮向上

性能参数

名称	类型	参数
	发射功率	≤70MW
	遥感动态范围	80% ~ 120%
	微调方式	电子微调方式
遥控器	供电要求	DC6V(4 节 5 号电池)
	控制范围	>800 米
	整套重量	550 克
	调制模式	符合欧洲标准的 FHSS 模式
	频段	2.400GHz - 2.483
	尺寸(mm)	42*28*10
[重量(g)	9.6
1女收益	供电要求	$DC4.5V \sim 6V$
	地面直线接收距离	>800 米
	接收机信号	PWM/SBUS

1.5 主控板

驱动控制板接收的速度控制范围是【-100,100】对应电机的反转最大速和正转最大速度。 当输入-100时,标示电机反向旋转,此时的速度对应是 48rpm,反转。反馈的编码器应 该是按照 6600X48X60 脉冲每分钟变化。划算到秒,也就是 6600X48 脉冲每秒。但是由于 驱动器使用了 32 位寄存器累计里程,所以反馈的里程变化,反转,这个值是减小的,存在 负数。溢出后清零。

当输入100时,标示电机正向旋转,此时的速度对应也是48rpm,正转。反馈的编码器 应该是按照6600X48X60 脉冲每分钟变化。划算到秒,也就是6600X48 脉冲每秒。但是由 于驱动器使用了32 位寄存器累计里程,所以反馈的里程变化,正转,这个值是增大的,溢 出后清零

● 接口协议

串口采用异步串行、全双工传输方式 波特率115200,8位数据位,1位停止位,无奇偶校验 所有长度大于1字节的数据均采用高字节在先的传输方式。

● 消息格式

帧头1	帧头2	数据长度	数据1	数据 2		数据N	校验和	
AA	55	0B	XX	XX	XX	XX	14	

1	h長引(2Duta)	Uaad	帧头 1	0xFE
2	帧头(2byte)	neau	帧头 2	OxEF
3	数据长度(1Byte)	数据1至数据N的字节量	1Byte	
4	士前由机转油度(9Buto)	油 	宣位左前	•••
5	工的电机将还反(2Dyte)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	同世任时	
6	右前由机转速度(9Bwto)		喜位在前	
7	石前电机存还及(ZDyte)		间亚江的	
8	左后由机转速度(9Bwte)		喜位在前	
9	工用电机转速及(2Dyte)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	间亚江的	
10	右后由机转速度(2Buto)	冲 庄 识 罢	宣位左前	
11	们们电机材还反(2Dyte)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	间世任时	
12	校验和	14		

● CAN 指令控制的实现

正常启动路威路威底盘,打开遥控器,然后将控制模式切换至指令控制,此时路威底盘 会接受来自 CAN 接口的指令,同时主机也可以通过 CAN 总线回馈的实时数据,解析当 前底盘的状态,具体协议内容参考 CAN 通讯协议。

第二章

ROS 及无人驾驶学习套件

2.1 物料清单

序号	名称	数量	备注
01	底盘	1	含电机、锂电池、遥控接收器、主控板。
02	上位机	1	含 Nvidia Jetson Nano、 深度相机、双目相机、雷达
03	屏幕	1	含电源线、HDMI 线

2.2 性能参数

参数类型	项目	指标		
	NVIDIA Jetson Nano	内置 64G SD 卡,WIFI 模块,金属		
		外壳包裹		
—————————————————————————————————————	激光雷达	思岚 A1 带 USB 数据线		
	CSI 相机	带上下调节支架一个		
	次度相扣	Astra pro 深度摄像头带 USB 数		
	(本)文/旧小儿	据线		
	算力(GFLOP)	472		
Name 台 数 指标	功耗(W)	5-10		
INANO 参致1日你	WIFI 模块标准	802.11		
	内存(GB)	4		
	测量距离(M)	0.15-12		
雪壮会粉	扫描角度(°)	0 - 360		
· · · · · · · · · · · · · · · · · · ·	单次测距时间(s)	0.5		
	频率(Hz)	1		
	深度范围(M)	0.6 - 8		
actro pro 深度相切	彩色分辨率	1280x720@30FPS		
astra pro {木/支/旧//L	深度分辨率	1280x1024@7FPS		
	麦克风	双声道立体声		

2.3 基本介绍

本章节简要介绍路威机器人全套系统,便于用户和开发者有一个基本的认识。

2.4 硬件框架

ROS 机器人硬件采用 Nano 和 STM32 运动控制器框架,组成框图参考下图,搭载电机数量根据型号不同有差异。

2.5 物理接口说明

④ 屏幕 HDMI 口

第三章 基础测试

3.1 整机组装

测试流程

3.2 进入系统

使用飞鼠在开机界面输入账户名(jubot)密码(jubot)即可进入系统

3.3 设置连接 WIFI

选择你要连接的网络,输入密码,等待连接成功

3.3 查看小车的 IP

使用飞鼠右键桌面,单击 Open Terminal 在打开的终端中输入 ifconfig

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet (192.168.1.18) netmask 255.255.255.0 broadcast 192.168.1.255
 inet6 fe80::2183:2c6a:800b:fda5 prefixlen 64 scopeid 0x20<link>
 ether a4:6b:b6:06:8a:33 txqueuelen 1000 (Ethernet)
 RX packets 884 bytes 827025 (827.0 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 443 bytes 57574 (57.5 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

3.3 使用 XSheel 远程连接到路威

1.打开 XSheel 在弹出的会话框中点击新建,输入刚才查到的车子的 IP 地址

2.点击确定,在弹出的窗口中输入用户名(nvidia)

☑ 会话 × 約新建 ▼ 20 | 26 階 邱 × 國 屈性 | 🔓 | 36 | 🖬 | 🖬 ▼ 常规 名称(N) 新建会议 所有会话 1 协议(P) SSH 192.168.1. 安全性 隧道 端口 协议 用户名 说明 主机 ▲ 名称 主机(H) 端口号(o) 说明(p); SERIAL 代理 保持活动状态 \$端 \$#盘 VT 模式 重新连接 VT 模式
 高级
 一辺距
 高级
 一跟踪
 日古記 □连接异常关闭时自动重新连接(A) 间隔(V): 合 分钟 0 ☑ 启动时显示此对话框(S) 连接(C) 关闭 确定 取消 H用户身份验证 SSH 用户名 × 远程主机: 192.168.1.18:22 (新建会话) 登录名: 服务器类型: 23 nvidia SSH2, OpenSSH_7.6p1 Ubuntu 远程主机: 192.168.1.18:22 (新建会话) 23 请在下面选择恰当的身份验证方法并提供登录所需的信息。 服务器类型: SSH2, OpenSSH 7.6p1 Ubuntu-4 ● Password(密码(W) ••••• 请输入登录的用户名(E): O Public Key(U) nvidia ─ 浏览(B)... • □记住用户名(R) □记住窑码(R) 确定 取消 确定 取消

3.点击确定,在弹出的窗口中输入密码(nvidia)

3.4 查看 ROS 版本

查看参数服务器中/rosdistro的值使用命令 rosparam get /rosdistro

nvidia@nvidia:~\$ rosparam get /rosdistro 'melodic

.

可以看到 ROS 的版本为 Melodic.

3.6 出厂源代码目录

打开终端输入 cd /home/jubot/

来到 Workspace 目录下后, 输入 1s -al 查看出厂目录。

*****	*****	******	*******	*******	an an	*****	*****	*****	*****	*****	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****							
#				#4					×* 30	JJON:	WWW.	ujon.cr	** #							
#	###	#####	##				##			#	## #									
# #	****	####		##			##	## #	# ##		* ## 3	ŧ ;								
* *							###	# #	# #		* ## 1									
#	# ##	*####	##	##		##:	## #		# 4	÷	****	##	## #							
# #1			***	***		##			* ##		****		F# #							
		###	## #	# ##			***		10 00		##		1411 11							
			# ##			#			****		#		# #							
			# #	## #		##			***				## #							
	#	##	# #			##	##			#			**** *							
	#	##	# #			#	##	####	*****	#	****	*****	# # #							
				# ##		##														
			*****	###		#	#				#		## #							
		*	44																	
		##		##			* *				#									
		#		##		#	***	#			#									
	#			##		#	#	#	#		#		# #							
# #		#		##		# :	#	#	#		#		# #							
#				444		##					#	#1	** #							
						#					#	##								
	ounas		*******	*******	wows	anan.	ousaus	aunus				*******	*****							
205	ASTER	URT:																		
ROS	P: 19	2.168.																		
ROBOT	TYPE																			
10000	+0111	ION-ROR	OT ~151s																	
			auda	city-dat		hash	Inc swi	n		omniz	d1 v	Je.	aconf	TCEauthority	NoMachine	nki	redhat	sch	viminfo	wnet-hst
			hash	history		cach	ie and			onfig	Down	loads	gnome2	jubot ws	ny	profile	ros	sudo as admin successful	vscode-oss	Xauthori
alia	srule	24	bash	lonout		arto	graphe	er we	d	hus		auth	gnome2 private	keras	nx	nython history	rviz	sysrules	vscode-server	rsession
anno	et.i.	inore y	m] bash	re		cmak	g. apine	-	Det	kton	£1.1	E k	anuna pri trace	local	other	at	Software	wim	Wallnamers	11100032011
abbe	****		OT 10			Chak			UC:	ancoh			anaba		orenet		Soreware		un e chahet a	

出厂目录简介:

名称	简介
jubot_ws	主要工作空间
cartographer_ws	视觉导航工作空间
dl_ws	深度学习工作空间
other	其他包工作空间

第四章 功能测试

4.1 RGB 相机的测试

在 Xsheel 打开的终端中输入 gst-launch-1.0 nvarguscamerasrc sensor_id=0 ! nvoverlaysink

nvidia@nvidia:~\$ gst-launch-1.0 nvarguscamerasrc sensor_id=0 ! nvoverlaysink

Setting pipeline to PAUSED ... Pipeline is live and does not need PREROLL ... Setting pipeline to PLAYING ... New clock: GstSystemClock GST ARGUS: Creating output stream CONSUMER: Waiting until producer is connected... GST ARGUS: Available Sensor modes : GST ARGUS: 3264 x 2464 FR = 21.000000 fps Duration = 47619048 ; Analog Gain rang e min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST ARGUS: 3264 x 1848 FR = 28.000001 fps Duration = 35714284 ; Analog Gain rang e min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST_ARGUS: 1920 x 1080 FR = 29.999999 fps Duration = 33333334 ; Analog Gain rang e min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST ARGUS: 1640 x 1232 FR = 29.999999 fps Duration = 333333334 ; Analog Gain rang e min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST_ARGUS: 1280 x 720 FR = 59.999999 fps Duration = 166666667 ; Analog Gain range min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST ARGUS: 1280 x 720 FR = 120.000005 fps Duration = 8333333 ; Analog Gain range min 1.000000, max 10.625000; Exposure Range min 13000, max 683709000; GST ARGUS: Running with following settings: $\overline{Camera index} = 0$ Camera mode = 2 Output Stream W = 1920 H = 1080 seconds to Run = 0Frame Rate = 29.999999 GST ARGUS: Setup Complete, Starting captures for 0 seconds GST ARGUS: Starting repeat capture requests. CONSUMER: Producer has connected; continuing 打开左边摄像头,此时在套件屏幕上会显示对应摄像头画面 Ctrl + C 关闭之后再输入 gst-launch-1.0 nvarguscamerasrc sensor id=1 ! nvoverlaysink nvidia@nvidia:~\$ gst-launch-1.0 nvarguscamerasrc sensor id=1 ! nvoverlaysink Setting pipeline to PAUSED ... Pipeline is live and does not need PREROLL ... Setting pipeline to PLAYING ... New clock: GstSystemClock GST_ARGUS: Creating output stream CONSUMER: Waiting until producer is connected... GST_ARGUS: Available Sensor modes : GST ARGUS: 3264 x 2464 FR = 21.000000 fps Duration = 47619048 ; Analog Gain range min 1.000000, max 10.625 000; Exposure Range min 13000, max 683709000; GST_ARGUS: 3264 x 1848 FR = 28.000001 fps Duration = 35714284 ; Analog Gain range min 1.000000, max 10.625 000; Exposure Range min 13000, max 683709000; GST ARGUS: 1920 x 1080 FR = 29.999999 fps Duration = 333333334 ; Analog Gain range min 1.000000, max 10.625 000; Exposure Range min 13000, max 683709000; GST ARGUS: 1640 x 1232 FR = 29,999999 fps Duration = 333333334 ; Analog Gain range min 1.000000, max 10.625 000; Exposure Range min 13000, max 683709000; GST_ARGUS: 1280 x 720 FR = 59.999999 fps Duration = 16666667 ; Analog Gain range min 1.000000, max 10.6250 00; Exposure Range min 13000, max 683709000; GST ARGUS: 1280 x 720 FR = 120.000005 fps Duration = 83333333 ; Analog Gain range min 1.000000, max 10.6250 00; Exposure Range min 13000, max 683709000; GST_ARGUS: Running with following settings: Camera index = 1 Camera mode = 2 Output Stream W = 1920 H = 1080 seconds to Run = 0Frame Rate = 29.999999

GST_ARGUS: Setup Complete, Starting captures for 0 seconds GST_ARGUS: Starting repeat capture requests.

如果都能正常打开则 RGB 摄像头没有问题

4.2 深度相机的测试

首先揭开双目摄像头的保护膜 Ctrl + C 关闭之前打开的摄像头 输入 roslaunch astra_camera astrapro.launch

started roslaunch server http://nvidia:44217/

SUMMARY

========

PARAMETERS

- * /camera/camera nodelet manager/num worker threads: 4
- * /camera/camera rgb/camera info url:
- * /camera/camera rgb/frame rate: 30
- * /camera/camera rgb/height: 480
- * /camera/camera_rgb/index: 0
- * /camera/camera rgb/product: 0x0502
- * /camera/camera rgb/serial: 0
- * /camera/camera rgb/timestamp method: start
- * /camera/camera rgb/vendor: 0x2bc5
- * /camera/camera rgb/video_mode: yuyv
- * /camera/camera rgb/width: 640
- * /camera/depth rectify depth/interpolation: 0
- * /camera/depth_registered_rectify_depth/interpolation: 0
- * /camera/driver/auto exposure: True
- * /camera/driver/auto_white_balance: True
- * /camera/driver/bootorder: 0
- * /camera/driver/color depth synchronization: False
- * /camera/driver/depth_camera_info_url:
- * /camera/driver/depth_frame_id: camera_depth_opti...
- * /camera/driver/depth_registration: True
- * /camera/driver/device_id: #1
- * /camera/driver/devnums: 1
- * /camera/driver/rgb_camera_info_url:
- * /camera/driver/rgb_frame_id: camera_rgb_optica...
- * /rosdistro: melodic
- * /rosversion: 1.14.5

显示如上画面即为正常

再打开一个 Xsheel 会话窗口,连接至上为机,在其中输入

rqt_image_view

注意此时应已经安装 Xmanager 软件

此时会显示如下画面

选择/camera/depth/image 话题可以看到深度信息

选择/camera/rgb/image raw 话题可以看到 RGB 信息

rqt_image_view_ImageView - rqt		-		×
Image View			D?	- 0
/camera/rgb/image_raw	- 🕄 🗌 0 🌲	10.00m	n 🌲	
gb/image_raw_mouse_left Smooth scaling	0° Gray 👻			

4.3 雷达的测试

因为 Xmanager 不能传输 Rviz GUI 界面,所以此步骤我们使用飞鼠在小屏幕上完成 使用飞鼠进入工控机界面

打开一个终端, 输入

lsusb

查看雷达是否上线, 若存在设备

Cygnal Integrated Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light

IUJON

nvidia@nvidia:~\$ lsusb Bus 002 Device 002: ID 0bda:0411 Realtek Semiconductor Corp. Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 003: ID 8087:0a2b Intel Corp. Bus 001 Device 009: ID 2bc5:0502 Bus 001 Device 008: ID 2bc5:0403 Bus 001 Device 007: ID 05e3:0610 Genesys Logic, Inc. 4-port hub Bus 001 Device 006: ID 0513:0318 digital-X, Inc. Bus 001 Device 005: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light Bus 001 Device 004: ID 1a86:7523 QinHeng Electronics HL-340 USB-Serial adapter Bus 001 Device 002: ID 0bda:5411 Realtek Semiconductor Corp. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub 即设备没有问题 输入 ls /dev -all 1 rwxrwxrwx 1 root 15 5月 2 19:14 astra pro -> bus/usb/001/008 root lrwxrwxrwx 15 5月 2 19:14 astrauvc -> bus/usb/001/009 1 root root 进入对应 launch 文件目录 roscd rplidar ros

vim rplidar.launch

修改 launch 文件中参数(param) serial_port 的 value 值 使之与映射端口对应后保存(ESC 后

Shift +z+z)

```
<launch>
                                       pkg="rplidar ros" type="rplidarNode" output="screen">
  <node name="rplidarNode"
  <param name="serial_port"
                                       type="string" value="/dev/ttyUSB0"/>
                                         pe="int" value="115200"/><!--A1/A2 -->
type="int" value="256000"--><!--A3 -->
                                       type="int"
  <param name="serial baudrate"
  <!--param name="serial_baudrate"
                                       type="string" value="laser"/>
  <param name="frame id"
  <param name="inverted"
                                       type="bool"
                                                       value="false"/>
  <param name="angle_compensate"</pre>
                                       type="bool"
                                                      value="true"/>
  </node>
</launch>
```

之后进入对应目录

roscd rplidar ros

运行雷达的演示 launch

roslaunch rplidar ros view rplidar.launch

此时能够正常显示雷达数据

4.4 整体测试

运行

roslaunch jubot_driver jubot_selfcheck.launch

```
      [INF0]
      [1629374887.623644]:
      ******JUBOT ROBOT SelfCheck Program******

      [INF0]
      [1629374887.628151]:
      +++++

      [INF0]
      [1629374887.632158]:
      +++++

      [INF0]
      [1629374887.635861]:
      +++++

      [INF0]
      [1629374887.639237]:
      +++++

      [INF0]
      [1629374887.639237]:
      +++++

      [INF0]
      [1629374887.642407]:
      ++++++

      [INF0]
      [1629374887.642260]:
      ++++++

      Motor Forward
      ++++++
```

然后按下任意键

```
[INF0] [1629374895.114003]: .....Starting Voltage Check......
[INF0] [1629374895.128557]: -----Voltage Check Failed!
[INF0] [1629374895.132867]: ....Starting Camera Check.....
[INF0] [1629374895.196362]: -----Raw Image Check OK! ------
[INF0] [1629374895.259853]: -----Compressed Image Check OK! ------
[INF0] [1629374895.263402]: ....Starting Rplidar Check.....
[INF0] [1629374895.367381]: -----Rplidar Check OK! ------
[INF0] [1629374895.360889]: ....Starting IMU Check.....
[INF0] [1629374895.360889]: ....Starting IMU Check.....
[INF0] [1629374895.364048]: -----IMU Check OK! ------
[INF0] [1629374895.367920]: ....Starting Motor Check.....
[INF0] [1629374896.372864]: .....Four Motor Forward Check Successful!.....
[INF0] [1629374900.380896]: .....Four Motor Backward Check Successful!.....
[INF0] [1629374900.384817]: ----Self Check Completed! ------
[INF0] [1629374900.388337]: ----Press [Ctrl+C] to Exit! -----
```

Check ok 为对应元器件没有问题

Check Failed 为对应元器件有问题

第五章 注意事项

本部分包含一些使用和开发过程中的应该注意的一些事项。

5.1 电池注意事项

- 路威产品出厂时电池并不是满电状态的,充电时间以充电器亮绿色指示灯表示充电 完毕,但是绿灯亮起后电池依然会以 0.1A 的电流缓慢充电,可以再充 30 分钟左 右;
- 请不要在电池使用殆尽以后再进行充电。
- 静态存放条件:存储的最佳温度为-20℃~60℃,电池在不使用的情况下存放, 必须是 2 个月左右充放电一次,然后使电池处于满电压状态进行存放,请勿 将电池放入火中,或对电池加热,请勿在高温下存储电池;
- 充电:必须使用配套的锂电池专用充电器进行充电,请勿在 0℃以下给电池
 充电,请勿使用非原厂标配的电池、电源、充电器。

5.2 使用环境注意事项

- 路威室外工作温度为-10℃~45℃,请勿在室外温度低于-10℃、高于 45℃
 环境中使用;
- 路威室内工作温度为 0℃~42℃,请勿在室内温度低于 0℃、高于 42℃环 境中使用;
- 路威的使用环境的相对湿度要求是:最大 80%,最小 30%;
- 请勿在存在腐蚀性、易燃性气体的环境或者靠近可燃性物质的环境中使用;
- 不要存在在加热器或者大型卷线电阻等发热体周围;
- 除特别定制版(IP 防护等级定制),路威不具有防水功能,请勿在有雨、 雪、积水的环境使用;
- 建议使用环境海拔高度不超过 1000m;
- 建议使用环境昼夜温差不超过 25℃;

5.3 其他注意事项

- 路威前后为塑料件,请勿直接捶打,否则容易损坏;
- 搬运时以及设置作业时,请勿落下或者倒置;
- 非专业人员,请不要私自拆卸。

第六章 常见问题与解决 Q&A

Q: 路威启动正常,使用遥控器控制车体不移动?

A: 首先确认驱动供电是否正常,小车的电源开关是否被按下,然后确认遥控器 的左侧上方模式选择开关选择的控制模式是否正确。

- Q: 路威遥控控制正常,底盘状态、运动信息反馈正常,下发控制帧协议, 车体控制模式无法切换,底盘不响应控制帧协议?
- A: 正常情况下,路威若可以通过要遥控器控制正常情况下,说明底盘运动 控制正常,可以接受到底盘的反馈帧,说明 CAN 扩展链路正常。请检查发送的 CAN 控制帧,看数据校验是否正确,控制模式中是否置为指令控制 模式,可 以通过底盘反馈的状态帧中错误位中校验错误标志的状态情况。
- Q: 路威在运行中发出"滴-滴-滴..."的声音,改如何处理?
- A: 若路威发出连续的"滴-滴-滴..."表明电池已经处于警报电压状态,请及时 充电。
- Q: 路威在运行过程中出现轮胎磨损情况是属于正常现象嘛?
- A: 路威在运行过程中出现轮胎磨损属于正常现象。由于路威采用的是四 轮差速转向的设计,在车体旋转的过程中会出现滑动摩擦和滚动摩擦并存的情况,如果地面不光滑,表面粗糙,这个时候对轮胎表面存在磨损情况。为了减 少磨损或者减缓磨损的过程,可以采用小角度转弯的形式,尽量减少原地旋转的形式。
- Q: 路威在遥控过程中出现轮子自动转动如何处理?
- A: 调整航模遥控器的微调开关
- Q: 路威在低电量时自动关闭如何处理?

A: 路威电量过低时,会使电池电压不稳定,不能够满足上位机的电压要求,以至于会自动断电,此时应该及时充电后再进行使用。